首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   37篇
  国内免费   15篇
航空   75篇
航天技术   34篇
综合类   2篇
航天   18篇
  2023年   2篇
  2022年   3篇
  2021年   7篇
  2020年   8篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   6篇
  2013年   3篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   9篇
  2008年   10篇
  2007年   10篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   6篇
  2002年   1篇
  2001年   8篇
  2000年   6篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   6篇
  1991年   1篇
排序方式: 共有129条查询结果,搜索用时 234 毫秒
91.
孙鹏  秦刚  王赤 《空间科学学报》2007,27(6):441-447
在具有湍动的磁场和垂直激波条件下对大量测试粒子的轨迹进行了数值计算,研究了激波强度和粒子初始能量对于粒子穿越激波的平均能量变化的影响,分析了漂移加速(SDA)在不同条件下对粒子加速的贡献,并给出了一个与数值结果相符合的漂移加速理论公式△E=amvivup(1-1/s).结果表明,加入磁场湍流后,垂直激波条件下粒子仍主要受到漂移加速作用,而基于粒子引导中心的耗散漂移加速理论在此条件下失效.   相似文献   
92.
Owing to the unique advantages in flight altitude, dwelling time and wide coverage area,stratospheric airships provide permanent monitoring and surveillance for both civil and military applications. Here we propose a semi-rigid stratosphere airship design with circumferential highpressure inflatable rings and a longitudinal carbon fiber skeleton supported inside. We perform numerical simulations to analyze the deformation characteristics during the whole ascending and descending process. An equi...  相似文献   
93.
《中国航空学报》2021,34(4):56-66
In this paper, a time–frequency algorithm based on adaptive chirplet transform for parameter modeling and identification of Linear Time-Varying (LTV) systems under random excitation is presented. It is assumed that the solution of responses of LTV structures is expressed as the sum of multicomponent Linear Frequency Modulated (LFM) signals in a short-time. Then the measured acceleration response is used to perform the adaptive chirplet transform, in which an integral algorithm is employed to reconstruct the velocity and displacement responses. The vibration differential equation with time-varying coefficients is transformed into a simple linear equation. Furthermore, for systems under random excitation, the input–output relation based on correlation function is also derived to estimate the parameters including physicals parameters and instantaneous modal parameters. The full procedure of the method is presented and validated by using simulated responses. The results show that the presented method is accurate and robust for various LTV systems under random excitation.  相似文献   
94.
《中国航空学报》2020,33(3):852-860
An experimental study was carried out in this article to investigate the transient operating performance of a Dual Compensation Chamber Loop Heat Pipe (DCCLHP) with Thermoelectric Cooler (TEC) under acceleration conditions and ammonia was selected as the working fluid. For the purpose of comparison, experimental work was conducted under terrestrial gravity. Sensitivity analysis was performed to explore the effect of several control parameters such as the heat load, acceleration magnitude and TEC assist on the startup and operating performance of the DCCLHP. Experimental results indicate that the DCCLHP can get to a steady-state operation when the heat load changes from 25 W to 300 W under terrestrial gravity. While under acceleration conditions, the DCCLHP can work at a high operating temperature or even fail to operate, which shows the acceleration effect plays a significant impact on the loop operation. The TEC assist with power of 10 W can improve the operating performance and reduce the operating temperature for the case of small heat load and acceleration magnitude. When the acceleration exceeds 3g at large heat load, the effect of TEC assist on the operation at large heat load can be ignored.  相似文献   
95.
《中国航空学报》2020,33(12):3405-3422
A novel acceleration tracking controller is proposed in this paper, for a Spinning Glide Guided Projectile (SGGP) subject to cross-coupling dynamics, external disturbances, and parametric uncertainties. The cross-coupled dynamics for the SGGP are formulated with mismatched and matched uncertainties, and then divided into acceleration and angular rate subsystems via the hierarchical principle. By exploiting the structural property of the SGGP, model-assisted Extended State Observers (ESOs) are designed to estimate online the lumped disturbances in the acceleration and angular rate dynamics. To achieve a rapid response and a strong robustness, integral sliding mode control laws and sigmoid-function-based tracking differentiators are integrated into the ESO-based Trajectory Linearization Control (TLC) framework. It is proven that the acceleration tracking controller can guarantee the ultimate boundedness of the signals in the closed-loop system and make the tracking errors arbitrarily small. The superiority and effectiveness of the proposed control scheme in its decoupling ability, accurate acceleration tracking performance and anti-disturbance capability are validated through comparisons and extensive simulations.  相似文献   
96.
Experiments were carried out to investigate the boiling heat transfer characteristics of Al_2O_3-water nanofluids in swirl microchannels under terrestrial gravity and acceleration fields. A centrifuge with a two-meter long rotational arm was used to simulate the acceleration magnitude up to 9 g and three various acceleration directions. Three test sections with different geometric parameters were applied. The volume concentration of Al_2O_3 nanoparticles with an average diameter of 13 nm was varied from 0.07% to 0.1%. The mass flow rate and vapor quality were in ranges of 3–6 kg/h and 0.4–1.0%, respectively. The effects of the mass flow rate, microchannel aspect ratio,vapor quality, nanoparticle volume concentration, and acceleration direction and magnitude were analyzed in a systematic manner. Experimental results showed that the acceleration direction and magnitude had significant influences on the boiling heat transfer. The heat transfer under configuration C was found to be superior to that under configurations A and B. Moreover, the heat transfer coefficient increased with increases of the mass flow rate and the volume concentration and decreased with the aspect ratio.  相似文献   
97.
结合卫星加速度模式无拖曳控制系统一般组成、各环节典型模型、常见控制器及天琴一号空间惯性基准建立试验卫星的采样周期与控制周期,着眼于工程实际问题的挖掘与解决,重点阐述了该卫星CIC滤波器组频响特性等效、加速度模式无拖曳控制系统稳定裕度及残余加速度指标分析与综合等技术内容。研究表明,多周期离散系统真实稳定裕度难于准确预测;积分系数是决定PSD指标的关键参数;抗混淆滤波器是提升时域残余加速度指标的关键环节,且有利于抑制高频数据在PSD低中频段的高频折叠;在未引入抗混淆滤波器的情形下,频域指标统计应以进入控制器的残余加速度数据为准。在轨飞行试验结果与仿真结果基本吻合。  相似文献   
98.
This paper evaluates the impact of residual acceleration noise on the estimation of the Earth’s time-varying gravity field for future low-low satellite-to-satellite tracking missions. The goal is to determine the maximum level of residual acceleration noise that does not adversely affect the estimation error. The Gravity Recovery And Climate Experiment (GRACE) has provided monthly average gravity field solutions in spherical harmonic coefficients for more than a decade. It provides information about land and ocean mass variations with a spatial resolution of ~350?km and with an accuracy within 2?cm throughout the entire Earth. GRACE Follow-on was launched in May 2018 to advance the work of GRACE and to test a new laser ranging interferometer, which measures the range between the two satellites with higher precision than the K-Band ranging system used in GRACE. Moreover, there have been simulation studies that show, an additional pair of satellites in an inclined orbit increases the sampling frequency and reduces temporal aliasing errors. Given the fact that future missions will likely continue to use the low-low satellite-to-satellite tracking formation with laser ranging interferometry, it is expected that the residual acceleration noise will become one of the largest error contributor for the time-variable gravity field solution. We evaluate three different levels of residual acceleration noise based on demonstrated drag-free systems to find a suitable drag-free performance target for upcoming geodesy missions. We analyze both a single collinear polar pair and the optimal double collinear pair of drag-free satellites and assume the use of a laser ranging interferometer. A partitioned best linear unbiased estimator that was developed, incorporating several novel features from the ground up is used to compute the solutions in terms of spherical harmonics. It was found that the suitable residual acceleration noise level is around 2?×?10?12?ms?2?Hz?1/2. Decreasing the acceleration noise below this level did not result in more accurate gravity field solutions for the chosen mission architecture.  相似文献   
99.
《中国航空学报》2021,34(5):485-495
Cooperative interception of the target with strong maneuverability by multiple missiles with weak maneuverability in the three-dimensional nonlinear model is studied. Firstly, the three-dimensional nonlinear model of cooperative guidance is established. The three-dimensional reachable region is represented composed of lateral acceleration and longitudinal acceleration in the two-dimensional coordinate system. Secondly, the problem of the multiple missile's reachable coverage area is transformed into the problem of cooperative coverage. A cooperative coverage strategy is proposed and an algorithm for quickly calculating the number of required missiles is designed. Then, the guidance law based on the cooperative coverage strategy is proposed, and it is proved that cooperative interception of the target can be achieved under the acceleration limit. Moreover, the relations among the number of missiles, the initial array position of terminal guidance and the coverage area of the target’s large maneuver are analyzed. The dynamic adjustment strategy of guidance parameters is proposed to reduce the guidance error. Finally, simulation results show that multiple missiles with low maneuverability can achieve effective interception of target with strong maneuverability through the proposed cooperative strategy and cooperative guidance method.  相似文献   
100.
In order to solve the aero-propulsion system acceleration optimal problem, the necessity of inlet control is discussed, and a fully new aero-propulsion system acceleration process control design including the inlet, engine, and nozzle is proposed in this paper. In the proposed propulsion system control scheme, the inlet, engine, and nozzle are simultaneously adjusted through the FSQP method. In order to implement the control scheme design, an aero-propulsion system component-level model is built to simulate the inlet working performance and the matching problems between the inlet and engine. Meanwhile, a stabilizing inlet control scheme is designed to solve the inlet con-trol problems. In optimal control of the aero-propulsion system acceleration process, the inlet is an emphasized control unit in the optimal acceleration control system. Two inlet control patterns are discussed in the simulation. The simulation results prove that by taking the inlet ramp angle as an active control variable instead of being modulated passively, acceleration performance could be obviously enhanced. Acceleration objectives could be obtained with a faster acceleration time by 5%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号